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Abstract

In this monograph, we introduce and rigorously develop the theory of motivic sieves, a
framework that combines classical sieve theory with the rich structures of motives in algebraic
geometry. We explore how motivic sieves can be used to address problems in analytic number
theory, such as the distribution of prime numbers and the behavior of arithmetic functions in
various contexts. Our approach connects the motivic aspects of algebraic varieties with sieve
methods, ultimately revealing new insights into unresolved conjectures and open problems.
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1 Introduction

The goal of this monograph is to introduce the theory of motivic sieves and explore its applications
in number theory. Classical sieve methods, such as the Brun sieve and Selberg sieve, have been
powerful tools for studying the distribution of prime numbers, twin primes, and more generally,
arithmetic functions. However, these methods primarily focus on analytic properties of number-
theoretic objects. Motivic sieves seek to enrich this perspective by incorporating motives, which
are geometric objects that encapsulate the cohomological information of algebraic varieties. This
combination leads to a deeper understanding of arithmetic properties and paves the way for new
results in both analytic number theory and arithmetic geometry.

We begin by reviewing some foundational concepts from classical sieve theory, motives, and their
interaction. From there, we develop the notion of a motivic sieve and demonstrate its utility in
various number-theoretic settings.
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2 Preliminaries

2.1 Sieve Theory Basics

Let us recall some basic concepts from sieve theory. The general setting of a sieve problem involves
a set A of integers, typically up to some large bound x, and a sequence of primes P . The goal is to
estimate the number of elements in A that are not divisible by any prime in P up to some bound.
A classical result of sieve theory is the Brun sieve, which gives an upper and lower bound for the
size of such a set. We will later extend this idea to the motivic setting.

2.2 Motives and Algebraic Geometry

Motives, introduced by Grothendieck, serve as the fundamental building blocks in algebraic geom-
etry. Given an algebraic variety X over a field F , its motive M(X) encapsulates the cohomological
information of X , such as its Hodge structure and L-functions. In this work, we focus on how these
motives interact with number-theoretic objects and how they can be leveraged in sieve theory.

For example, for a smooth projective variety X , we associate its motive M(X) with the L-function
L(s,X). The interplay between such L-functions and arithmetic functions forms the core of our
motivic sieve framework.

3 Motivic Sieves

We now introduce the notion of a motivic sieve. The idea is to construct a sieve in a motivic setting,
where instead of filtering integers, we sieve through algebraic varieties or motives. Consider a set
A of varieties over a finite field Fq. For each prime ℓ, we associate the ℓ-adic cohomology group
H∗(XFq ,Qℓ) with the variety X . Our goal is to estimate the “count” of varieties in A whose
cohomology groups satisfy certain motivic conditions.

3.1 General Setup

Let A be a set of varieties defined over a number field K. For each prime p of K, we define a
motivic sieve by associating a motive M(X) to each variety X ∈ A. Let P be the set of primes
for which we wish to sieve out varieties whose motives satisfy specific properties, such as having
trivial ℓ-adic cohomology for ℓ dividing p.

Formally, we define the motivic sieve as the following construction:

S(A,P , z) =
∑
X∈A

∏
p∈P

(
1− χ(M(X)p)

z

)
,
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where χ(M(X)p) is the Euler characteristic of the ℓ-adic cohomology of M(X) at the prime p,
and z is a complex parameter. This sieve expression generalizes classical sieve methods by taking
into account the motivic structure of the varieties involved.

3.2 Motivic Sieve Theorems

We can derive analogues of classical sieve theorems in the motivic setting. For example, the mo-
tivic version of Brun’s sieve gives upper and lower bounds for the number of varieties whose mo-
tives satisfy specific cohomological properties. These bounds depend on the Euler characteristics
of the associated motives and the structure of their L-functions.

Theorem 3.2.1 (Motivic Brun Sieve) Let A be a set of varieties over a number field K, and let
P be a set of primes. Define the motivic sieve S(A,P , z) as above. Then, under certain regularity
conditions on the motives, we have

|S(A,P , z)| ≤ C1z
−1 + C2z

−2 +O(z−3),

where C1 and C2 are constants depending on the Euler characteristics of the motives and the
primes in P .

4 Applications to Number Theory

The motivic sieve framework has several applications in number theory, particularly in the study of
prime numbers and L-functions. One such application is to the problem of counting rational points
on varieties over finite fields, where the sieve filters out varieties with specific motivic properties.

4.1 Prime Number Theorem for Motives

One key result of classical sieve theory is its application to prime number distribution. We extend
this idea to the distribution of motives with certain cohomological properties. This leads to a
motivic analogue of the prime number theorem, where the role of primes is played by certain
special varieties whose L-functions have specific zeros or poles.

5 Conclusion and Future Directions

The theory of motivic sieves opens a new avenue of research at the intersection of analytic number
theory and algebraic geometry. By combining the powerful tools of sieve theory with the rich
structure of motives, we obtain new insights into longstanding problems and conjectures. Future
work may explore connections with the Langlands program, the study of automorphic forms, and
the development of more refined motivic sieve methods for specific classes of varieties.
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6 Motivic Sieve Beyond Classical Settings

We now extend the motivic sieve to a more general class of objects. Consider a generalization
where instead of considering motives over a number field K, we consider motives over an arbitrary
field F , including finite fields, global function fields, and p-adic fields. In this context, we define
the motivic sieve in terms of the field’s arithmetic structure, which plays a crucial role in the
distribution of primes and arithmetic objects.

6.1 Motivic Sieves over Finite Fields

Let Fq be a finite field of characteristic p, and let AFq be the set of varieties defined over Fq. The
motivic sieve S(A,P , z) is now defined by associating a motive M(X) to each variety X ∈ AFq

and sieving out varieties whose cohomology groups H∗(X,Qℓ) for ℓ ̸= p satisfy certain properties.

We conjecture that motivic sieves over finite fields can be used to estimate the number of varieties
whose Frobenius eigenvalues lie in certain ranges. This approach could yield new results related
to the distribution of points on varieties over finite fields.

Conjecture 6.1 (Motivic Prime Number Theorem over Finite Fields) Let AFq be the set of va-
rieties over a finite field Fq. Define the motivic sieve S(A,P , z) for P a set of primes of Fq.
Then, the number of varieties X ∈ AFq whose L-functions have trivial zeros near s = 1 can be
asymptotically approximated by∑

X∈AFq

Λ(M(X)) ∼ qn

log(q)
+O

(
qn−1

log2(q)

)
,

where Λ(M(X)) is a motivic weight function associated to the Frobenius eigenvalues of the variety
X .

6.2 p-adic Motivic Sieves

In the p-adic setting, motivic sieves can be defined using varieties over a p-adic field Qp. The
role of the Euler characteristic in the classical sieve is replaced by the p-adic Hodge structure
of the motive associated with a variety X . Let X be a smooth projective variety over Qp. The
cohomology groups H∗

ét(X,Qp) provide a filtration of the motive, and the motivic sieve can be
formulated as:

SQp(A,P , z) =
∑

X∈AQp

∏
p∈P

(
1−

χp-adic(M(X))

z

)
,

where χp-adic(M(X)) is the p-adic Euler characteristic of the motive M(X), taking into account
the Hodge filtration and the action of Frobenius on H∗

ét(X,Qp).
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7 Higher-Dimensional Motivic Sieve Methods

The classical sieve theory primarily operates on one-dimensional number-theoretic objects, such
as integers or primes. In contrast, motivic sieves naturally extend to higher-dimensional objects,
including varieties of dimension n > 1. In this section, we develop sieve methods for higher-
dimensional motives, focusing on applications to the geometry of algebraic varieties and their
L-functions.

7.1 Sieving on Higher Genus Curves

Consider the case where A is the set of genus g curves over a number field K. We define a motivic
sieve for the number of curves whose Jacobians have certain properties. Let X be a genus g curve
over K, and let J(X) be its Jacobian variety. We sieve through the set of curves whose Jacobians
satisfy specific motivic conditions, such as having trivial Tate modules at certain primes.

Theorem 7.1.1 (Motivic Sieve on Higher Genus Curves) Let A be the set of genus g curves over
a number field K, and let P be a set of primes. Define the motivic sieve S(A,P , z) by sieving out
curves whose Jacobians J(X) have trivial ℓ-adic Tate modules for primes ℓ dividing P . Then the
number of such curves satisfies the following bound:

|S(A,P , z)| ≤ Cgz
−g +O(z−g−1),

where Cg is a constant depending on the genus g and the structure of the Jacobians.

7.2 Motivic Sieves for Varieties with Higher Dimensional Moduli Spaces

We now extend the motivic sieve to varieties whose moduli spaces have higher dimensions. Con-
sider a family of varieties parameterized by a moduli space Md of dimension d. For each variety
X in this family, we associate a motive M(X) and a motivic sieve that filters out varieties based
on conditions on the cohomology of their moduli space.

Theorem 7.2.1 (Motivic Sieve for Varieties with Higher Dimensional Moduli Spaces) Let Md

be the moduli space of a family of varieties of dimension d, and let A ⊆ Md be a subset of varieties
satisfying certain motivic conditions. Define the motivic sieve S(A,P , z) by sieving out varieties
whose cohomology groups have trivial motives. Then, the number of such varieties is bounded by:

|S(A,P , z)| ≤ Cdz
−d +O(z−d−1),

where Cd depends on the dimension d of the moduli space and the motivic properties of the vari-
eties.
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8 Motivic Sieve Methods for Generalized L-functions

A key application of motivic sieves is the study of generalized L-functions associated with motives.
In this section, we explore how motivic sieve methods can be applied to L-functions, particularly
in cases where classical sieve methods are insufficient. For example, motivic sieves can be used to
detect special zeros or poles of L-functions at critical points.

8.1 Motivic Sieves and Zeta Functions of Varieties

Let X be an algebraic variety over a number field K, and let L(s,M(X)) denote the L-function
associated with the motive M(X). We define a motivic sieve that estimates the number of varieties
whose L-functions satisfy specific conditions, such as having trivial zeros at certain points.

Conjecture 8.1 (Motivic Zero Detection) Let A be the set of varieties over a number field K,
and let S(A,P , z) be the motivic sieve that filters out varieties whose L-functions have trivial
zeros near s = 1. Then, the number of varieties whose L-functions satisfy this property can be
bounded by:

|S(A,P , z)| ≤ CLz
−1 +O(z−2),

where CL depends on the structure of the L-functions associated with the motives.

9 Applications of Motivic Sieves to Arithmetic Statistics

The application of motivic sieves to arithmetic statistics presents an opportunity to study various
statistical properties of number-theoretic objects, such as the distribution of primes in different
arithmetic progressions, the density of rational points on varieties, and the distribution of class
numbers of number fields. In this section, we apply motivic sieve methods to address these prob-
lems in the context of motivic arithmetic statistics.

9.1 Distribution of Primes in Arithmetic Progressions

We begin by exploring the distribution of prime numbers in arithmetic progressions from a motivic
perspective. Classically, the prime number theorem for arithmetic progressions states that the
number of primes in an arithmetic progression a (mod q), where (a, q) = 1, asymptotically equals

π(x; q, a) ∼ π(x)

ϕ(q)
,

where ϕ(q) is Euler’s totient function. In the motivic setting, we consider primes as associated
with varieties whose cohomological properties correspond to certain arithmetic conditions.
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Theorem 9.1.1 (Motivic Sieve for Arithmetic Progressions) Let A be the set of primes in the
arithmetic progression a (mod q), where (a, q) = 1, and let P be the set of primes dividing q.
Define the motivic sieve S(A,P , z) by sieving out primes that are associated with varieties whose
cohomology groups satisfy certain motivic properties. Then, the number of such primes satisfies:

|S(A,P , z)| ∼ π(x)

ϕ(q)
+O

(
x1/2

log2(x)

)
.

9.2 Motivic Sieves for Class Groups of Number Fields

Class groups of number fields are central objects in algebraic number theory, and motivic sieves
provide a new approach to studying their distribution. Let K be a number field with class group
Cl(K). We apply motivic sieve methods to estimate the size of the class group, filtered by the
motivic properties of the number field’s associated varieties.

Theorem 9.2.1 (Motivic Sieve for Class Groups) Let A be the set of number fields with discrim-
inants less than x, and let P be the set of primes dividing the discriminants. Define the motivic
sieve S(A,P , z) by sieving out number fields whose class groups Cl(K) have trivial motivic prop-
erties. Then, the number of such number fields with class group size greater than a given threshold
satisfies:

|S(A,P , z)| ≤ Cx1/2 +O(x1/4),

where C is a constant depending on the structure of the class groups.

10 Higher-Order Motivic Sieves and Refinements

We now extend the theory of motivic sieves to higher-order sieves, which allow for more refined
estimates of the distribution of number-theoretic objects. Higher-order sieves are essential for
addressing problems where classical sieve methods yield results that are too coarse. In this section,
we introduce higher-order motivic sieves and prove refined versions of the previous results.

10.1 Second-Order Motivic Sieve

The second-order motivic sieve provides a more detailed filtration of arithmetic objects, by con-
sidering not only the cohomology of associated motives but also their higher cohomological struc-
tures. We define the second-order motivic sieve as follows:

S2(A,P , z) =
∑
X∈A

∏
p∈P

(
1− χ2(M(X)p)

z2

)
,

where χ2(M(X)p) is a second-order cohomological characteristic of the motive M(X), which
takes into account higher cohomology groups.
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Theorem 10.1.1 (Second-Order Motivic Sieve for Primes) Let A be the set of primes in an arith-
metic progression a (mod q), and let S2(A,P , z) be the second-order motivic sieve. Then, the
number of primes in the arithmetic progression satisfying the motivic conditions is given by:

|S2(A,P , z)| ∼ π(x)

ϕ(q)
−

√
x

z log x
+O

(
x1/3

z2 log2 x

)
.

10.2 Generalization to k-th Order Sieves

The k-th order motivic sieve generalizes the previous second-order sieve by incorporating higher-
order cohomological structures. These higher-order sieves allow us to study more refined proper-
ties of motives, especially those that arise in the study of L-functions, modular forms, and auto-
morphic representations. The k-th order motivic sieve is defined as:

Sk(A,P , z) =
∑
X∈A

∏
p∈P

(
1− χk(M(X)p)

zk

)
,

where χk(M(X)p) is a k-th order cohomological characteristic.

Theorem 10.2.1 (k-th Order Motivic Sieve) Let A be a set of number-theoretic objects (such as
primes, varieties, or number fields), and let P be a set of primes. The k-th order motivic sieve
provides the following estimate for the number of objects satisfying the motivic conditions:

|Sk(A,P , z)| ∼ Ckz
−k +O(z−k−1),

where Ck is a constant depending on the order k and the cohomological structure of the motives.

11 Motivic Sieves and the Langlands Program

One of the most promising directions for motivic sieve theory is its application to the Langlands
program. The Langlands program seeks to establish deep connections between Galois representa-
tions and automorphic forms. Motivic sieves provide a new tool for studying these connections,
particularly in the context of L-functions and the distribution of automorphic representations.

11.1 Motivic Sieves and Automorphic Forms

Let π be an automorphic representation of a reductive algebraic group G(A), where A denotes the
adeles of a number field K. We define a motivic sieve that filters out automorphic forms whose
associated L-functions satisfy certain motivic properties. In this context, the motivic sieve operates
on the space of automorphic representations, sieving out those whose L-functions have non-trivial
zeros at specified points.
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Theorem 11.1.1 (Motivic Sieve for Automorphic Forms) Let Π be the set of automorphic rep-
resentations of G(A), and let P be a set of primes. Define the motivic sieve S(Π,P , z) by sieving
out representations whose L-functions have trivial zeros. Then, the number of automorphic repre-
sentations satisfying the motivic conditions is given by:

|S(Π,P , z)| ∼ |Π|
log z

+O

(
|Π|1/2

log2 z

)
,

where |Π| is the dimension of the space of automorphic forms.

11.2 Motivic Sieves and Galois Representations

Motivic sieves also apply to the study of Galois representations, which play a central role in the
Langlands program. Let ρ : Gal(K/K) → GLn(Qℓ) be a Galois representation associated with
a motive M . The motivic sieve filters out Galois representations whose L-functions have specific
properties, such as trivial zeros or poles at certain points.

Theorem 11.2.1 (Motivic Sieve for Galois Representations) Let A be the set of Galois repre-
sentations ρ associated with motives M(X) for varieties X over a number field K, and let P be a
set of primes. Define the motivic sieve S(A,P , z) by sieving out representations whose L-functions
have trivial zeros. Then, the number of such Galois representations is given by:

|S(A,P , z)| ≤ Cρz
−n +O(z−n−1),

where Cρ depends on the rank n of the Galois representations.

12 Conclusion and Future Research Directions

The theory of motivic sieves offers a rich framework for studying problems at the intersection
of number theory, algebraic geometry, and the Langlands program. By extending classical sieve
methods to motives and their associated cohomological structures, we obtain new tools for ad-
dressing deep problems in arithmetic statistics, automorphic forms, and Galois representations.
Future research may explore higher-order motivic sieves, connections to the Langlands reciprocity
conjectures, and the application of motivic sieves to arithmetic dynamics.

12.1 Open Problems

(a) Can motivic sieves be used to refine the estimates in the Langlands program, particularly in
the case of non-tempered automorphic forms?

(b) How can motivic sieves be applied to the study of rational points on higher-dimensional
varieties, particularly in the context of the Birch and Swinnerton-Dyer conjecture?
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(c) What are the implications of higher-order motivic sieves for the distribution of primes in
short intervals and in arithmetic progressions?
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